11  Plotting

Now that we have seen most of the basics, let’s start the fun stuff !

There are two main ways to plot data in R:

ggplot2 is extremely powerful and some people advise not even teaching base graphics to beginners. But I find that some times it’s just quicker/easier with base graphics, so I will still present it, although not in full details.

11.1 Base graphics

11.1.1 Basic plotting

x  <- seq(-3*pi,3*pi,length=50)
y  <- sin(x)
z  <- sin(x)^2
df <- data.frame(x=x, y=y)
plot(x,y) # plot providing x and y data

plot(df)  # plot providing a two-columns data.frame

plot(df, type="l")

plot(df, type="b")

df <- data.frame(x=x, y=y, z=z, w=z*y)
plot(df)  # plot providing a multi-columns data.frame

11.1.2 Adding some style

OK, easy. Now let’s do some tuning of this, because it’s a tad ugly… Type in each command and see what they do.

# create some fake data
x  <- seq(-3*pi,3*pi,length=100)
df <- data.frame(x=x, y=sin(x), z=sin(x)^2)
# add some styling parameters
par(family = "Helvetica", cex.lab=1.5, cex.axis=1.4, 
    mgp = c(2.4, .5, 0), tck=0.02, mar=c(4, 4, 2, .5), lwd=2, las=1)
plot(df$x,df$y,
     type = "l",     # "l" for lines, "p" for points
     xlab = "X values",
     ylab = "Intensity",
     axes = FALSE,
     main = "Some Plot",
     ylim = c(-1,2)
    )
# vertical line in 0
abline(v=0,lty=2,lwd=2)
# horizontal line in 0
abline(h=0,lty=3,lwd=2)
# line with coefficients a (intercept) and b (slope)
abline(a=0,b=.1,lty=4,lwd=1)
# add a line
lines(df$x,df$z,type = "l",col="red",lwd=3)
# add points
points(df$x,df$z*df$y,col="royalblue",pch=16,cex=1)
# add custom axis. 
# Default with axis(1);axis(2);axis(3, labels=FALSE);axis(4, labels=FALSE);
# Bottom
axis(1,at=seq(-10,10,2),labels=TRUE,tck=0.02)
axis(1,at=seq(-10,10,1),labels=FALSE,tck=0.01); # small inter-ticks
# Top
axis(3,at=seq(-10,10,2),labels=FALSE)
axis(3,at=seq(-10,10,1),labels=FALSE,tck=0.01); # small inter-ticks
# Left
axis(2,at=seq(-1,2,.5),labels=TRUE)
axis(2,at=seq(-1,2,.25),labels=FALSE,tck=0.01); # small inter-ticks
# Right
axis(4,at=seq(-1,2,.5),labels=FALSE)
axis(4,at=seq(-1,2,.25),labels=FALSE,tck=0.01); # small inter-ticks
# Draw a box
box()
# Print legend
legend("topleft",
    cex=1.4, #size of text
    lty=c(1,1,NA),   # type of line (1 is full, 2 is dashed...)
    lwd=c(1,3,NA),   # line width
    pch=c(NA,NA,16), # type of points
    col=c("black","red","royalblue"), # color
    bty = "n", # no box around legend
    legend=c("sin(x)",expression("sin(x)"^2),expression("sin(x)"^3))
    )

Most needs should be covered with this simple plot that can be adapted.

Go to Rstudio Preferences, Code, Edit code snippets, and add the following lines:

snippet plot
    #pdf("xxx.pdf", height=6, width=8)
    par(cex.lab=1.7, cex.axis=1.7, mgp = c(3, 0.9, 0), 
        tck=0.02, mar=c(4.5, 4.5, 1, 1), lwd = 3, las=1)
    plot(${1:x},${2:y},
        type="l",      # plot with a line
        ylim=c( , ),
        xlim=c( , ),
        lwd=2,         # width of the line
        lty=1,         # type of line
        axes=FALSE,    # do not show axes
        xlab="${1:x}", # x label
        ylab="${2:y}", # y label
        main="")       # Title
    legend("topright",
        cex=1.5,       # size of the text
        pch=c(),       # list of point types
        lty=c(),       # list of line types
        lwd=c(),       # list of line widths
        col=c(),       # list of line colors
        bty="n",       # no box around the legend
        legend=c()     # list of legend labels
        )
    # Draw axes with minor ticks
    axis(1, at=seq(0,1,.2), labels=TRUE)
    axis(1, at=seq(0,1,.1), labels=FALSE, tck=0.01)
    axis(3, at=seq(0,1,.2), labels=FALSE)
    axis(3, at=seq(0,1,.1), labels=FALSE, tck=0.01)
    par(mgp = c(2.5, 0.2, 0))
    axis(2, at=seq(0,10,1), labels=TRUE)
    axis(2, at=seq(0,10,.5), labels=FALSE, tck=0.01)
    axis(4, at=seq(0,10,1), labels=FALSE)
    axis(4, at=seq(0,10,.5), labels=FALSE, tck=0.01)
    box() # drow box around plot
    #dev.off()

11.1.2.1 Panel plots

Lets create a plot with different panels (a bit ugly without styling, you need to tweak the margins and text distance to plot with par(mar(), mgp()) before each plot):

# some fake data
x  <- seq(-10,10,1)
d1 <- data.frame(x=x, y=sin(x))
d2 <- data.frame(x=x, y=cos(x))
d3 <- data.frame(x=x, y=exp(-x^2)*sin(x)^2)
# on a simple grid, use:
# par(mfrow=c(nrows, ncols))
par(mfrow=c(1, 3), mar=c(4,4,1,1))
plot(d1,type="l")
plot(d2,type="p")
plot(d3,type="b")

# creating the layout and styling
M  <- matrix(c(c(1,1),c(2,3)), byrow=TRUE, ncol=2); M
#>      [,1] [,2]
#> [1,]    1    1
#> [2,]    2    3
nf <- layout(M, heights=c(1), widths=c(1))
# first plot
plot(d1,type="l")
# second plot
plot(d2,type="p")
# third plot
plot(d3,type="b")

# creating the layout and styling
M  <- matrix(c(c(1,1),c(2,3)), byrow=FALSE, ncol=2); M
#>      [,1] [,2]
#> [1,]    1    2
#> [2,]    1    3
nf <- layout(M, heights=c(1), widths=c(1))
# first plot
plot(d1,type="l")
# second plot
plot(d2,type="p")
# third plot
plot(d3,type="b")

11.1.2.2 Barplots and densities

x <- rnorm(1e4, mean = 0, sd = 1)
# Barplot
hist(x)

# Density
y  <- density(x, bw=0.1) # small kernel bandwidth
y2 <- density(x, bw=0.5) # larger kernel bandwidth
plot(y, lwd=2, main="", xlab="X values", xlim=c(-4,4))
lines(y2,col="red",lwd=2)
points(x, jitter(rep(.01,length(x)), amount=.01), 
        cex=1,pch=16, col=adjustcolor("royalblue", alpha=.01))

Exercise

Try reproducing these plots:

11.2 Advanced plotting using ggplot2

Further reading here and on the cheatsheet for example.

ggplot2 is a package (now even available for python) that completely changes the methodology of plotting data. With ggplot2, data are gathered in a tidy data.frame, and each column can be used as a parameter to tweak colors, point size, etc.

First things first, load the library :

Actually, ggplot2 is attached to tidyverse so a simple:

is enough, as it will load ggplot2 and most of the useful data manipulation libraries.

11.2.1 The grammar of graphics

With ggplot2 is introduced the notion of “grammar of graphics” through the function ggplot(). What it means is that the plots are built through independent blocks that can be combined to create any wanted graphical display. To construct a plot, you need to provide building blocks such as:

  • data gathered in a tidy data.frame
  • an aesthetics mapping: what column is x, y, the color, the size, etc…
  • geometric object: point, line, bar, histogram, tile…
  • statistical transformations if needed
  • scales: color_manual, x_continuous, …
  • coordinate system
  • faceting: wrap, grid
  • theme: theme_bw(), theme_light()…

The typical call to ggplot() is thus (the arguments between <> are yours to specify):

ggplot(data=<data>, aes(x=<x>, y=<y>, color=<z>, size=<w>))+
    geom_<geometry>()+
    scale_<scales>()+
    facet_<facets>()+
    <theme>

Since a figure is worth a thousand words, let’s get to it. We will use the dataset diamonds built-in with the ggplot2 package. Let’s have a look:

diamonds
#> # A tibble: 53,940 × 10
#>    carat cut       color clarity depth table price     x     y     z
#>    <dbl> <ord>     <ord> <ord>   <dbl> <dbl> <int> <dbl> <dbl> <dbl>
#>  1  0.23 Ideal     E     SI2      61.5    55   326  3.95  3.98  2.43
#>  2  0.21 Premium   E     SI1      59.8    61   326  3.89  3.84  2.31
#>  3  0.23 Good      E     VS1      56.9    65   327  4.05  4.07  2.31
#>  4  0.29 Premium   I     VS2      62.4    58   334  4.2   4.23  2.63
#>  5  0.31 Good      J     SI2      63.3    58   335  4.34  4.35  2.75
#>  6  0.24 Very Good J     VVS2     62.8    57   336  3.94  3.96  2.48
#>  7  0.24 Very Good I     VVS1     62.3    57   336  3.95  3.98  2.47
#>  8  0.26 Very Good H     SI1      61.9    55   337  4.07  4.11  2.53
#>  9  0.22 Fair      E     VS2      65.1    61   337  3.87  3.78  2.49
#> 10  0.23 Very Good H     VS1      59.4    61   338  4     4.05  2.39
#> # ℹ 53,930 more rows

diamonds contains 53940 lines and 10 columns in a tibble. ggplot2 can easily handle such large dataset.

Let’s say we want to see whether there is a correlation between price and weight (carat) of the diamonds. We will make a call to ggplot() by providing it the data and the x and y mapping:

p <- ggplot(data = diamonds, aes(x = carat,y = price))
p

You see that our plot p here has the proper axis labels and range:

glue::glue("carat {c('min','max')}: {range(diamonds$carat)}")
#> carat min: 0.2
#> carat max: 5.01
glue::glue("price {c('min','max')}: {range(diamonds$price)}")
#> price min: 326
#> price max: 18823

but it does not display any data points. For this we have to add a geometry to the plot, using one of the geom_xx() functions. Let’s plot it using points for now:

OK, we’re onto something, but we can probably add some information to this plot. We will first cut the data above 3 carats because they are not relevant, and add some transparency to the points to see some statistical information. Let’s make use of the pipe operator |> to make this easily readable:

p <- diamonds |> 
        filter(carat<=3) |> 
        ggplot(aes(x = carat, y = price))
p + geom_point(alpha=0.5)

Let’s now see whether the type of cut plays a role here by coloring the points according to the cut variable:

p <- diamonds |> 
        filter(carat<=3) |> 
        ggplot(aes(x = carat, y = price, color = cut))
p + geom_point(alpha=0.5)

It looks like the price dispersion is homogeneous, we can make sure by adding a spline smoothing:

p + geom_point(alpha=0.5) + 
    geom_smooth()

The slope evolution shows that in general, the better the cut, the higher the price. But there are some discrepancies that may be explained in another manner:

p <- diamonds |> 
        filter(carat<=3) |> 
        ggplot(aes(x = carat, y = price, color = clarity))
p + geom_point(alpha=0.5) + geom_smooth()

It is often easier to grasp a multi-variable problem by plotting all our data in a facet plot using facet_wrap(~variable1) if you want one variable changing in each plot:

colors <- rainbow(length(unique(diamonds$clarity)))
p <- diamonds |> 
        ggplot(aes(x = price, y = carat, color = clarity)) + 
        geom_point(alpha = 0.5, size = 1) + 
        geom_smooth(color = "black") + 
        scale_colour_manual(values = colors, name = "Clarity") +
        facet_wrap(~cut) 
p

… or facet_grid(y_variable ~ x_variable) if you want to see one variable as a function of another:

p <- diamonds |> 
        ggplot(aes(x = price, y = carat, color = color)) + 
        geom_point(alpha = 0.8, size = 1) + 
        geom_smooth(method = "lm", color = "black") + 
        scale_colour_brewer(palette = "Spectral", name = "Color") +
        facet_grid(clarity ~ cut) 
p

Or by adding another graphical parameter such as the size of the points:

p <- diamonds |> 
        ggplot(aes(x = price, y = carat, color = clarity, size = cut)) + 
        geom_point(alpha = 0.5) + 
        scale_colour_manual(values = colors, name = "Clarity")
p

OK, maybe not here because the graph gets clogged, so we can lighten it by sampling data:

p <- diamonds |> 
        sample_n(500) |> 
        ggplot(aes(x = carat, y = price, color = clarity, size = cut)) + 
        geom_point(alpha = 0.5) + 
        scale_colour_manual(values = colors, name = "Clarity")
p

11.2.2 Writing maths in the plot

To write mathematical expressions, including subscripts/superscripts, or more complex mathematical formulas, the easiest way is to use \(\LaTeX\) expressions thanks to the latex2exp package. Just write your text within a latex2exp::TeX() function, and that is all. Since R 4.0, it is recommended to use the raw string literal syntax. The syntax looks like r"(...)", where ... can contain any character sequence, including \ (no need to escape the \ character).

Also, in case you have a variables to add in your string, it is often clearer/easier to use glue::glue() instead of paste() or paste0(). Then, you can combine the two, like so:

library(latex2exp)
library(glue)
A <- 1.2
B <- 4
diamonds |> 
    sample_n(100) |> 
    ggplot(aes(x = carat, y = price))+
        geom_point(alpha = 0.5) +
        labs(x = "Carat",
             y = "Price",
             title = TeX(glue(r'(This is some $\,\LaTeX\,$ maths: $\,\sum_i^{N}\frac{x_i^{[A]}}{[B]}$)', 
                        .open = "[", .close = "]"))
            )

For more complicated stuff, I however advise to not use the TeX() function and write directly your text in \(\LaTeX\), then export your plot with tikzDevice as a .tex file and compile it to pdf.

11.2.3 Logarithmic scale

To transform the axis with a logarithmic scale, use the transform = "log10" option of the or scale_x(y)_continuous() functions. Here is an example:

breakslog10 <- function(x){
    low <- floor(log10(min(x)))
    high <- ceiling(log10(max(x)))
    return(10^(seq(low, high)))
}
minorbreakslog10 <- function(x){
    low <- floor(log10(min(x)))
    high <- ceiling(log10(max(x)))
    return(rep(1:9, length(low:high))*(10^rep(low:high, each = 9)))
}
diamonds |> 
    sample_n(100) |> 
    ggplot(aes(x = carat, y = price))+
        geom_point(alpha = 0.5) +
        labs(x = "Carat",
             y = "Price")+
        scale_y_continuous(
            # tweak the limits if you want
            limits = c(10,1e5),
            # transform the scale
            transform = "log10",
            # major breaks in powers of 10
            breaks = breakslog10,
            # minor breaks (only useful for the grid)
            minor_breaks = minorbreakslog10,
            # write labels in scientific notation
            labels = scales::trans_format("log10", scales::math_format(10^.x)),
            # add logticks
            guide = guide_axis_logticks(long = 2, mid = 1, short = 0.5)
        )

11.2.4 Theming

It is very easy to keep the same theme on all your graphs thanks to the theme() function. There are a collection of pre-defined themes, like:

You can define all the parameters you want, like this (hit ?theme like usual to see all the parameters):

my_theme <- theme_bw()+
            theme(text = element_text(size = 18, 
                                      family = "Times", 
                                      face = "bold"),
                  axis.ticks = element_line(linewidth = 1),
                  legend.text = element_text(size = 14, family = "Times"),
                  panel.border = element_rect(linewidth = 2),
                  panel.grid.major = element_blank(), 
                  panel.grid.minor = element_blank()
                  )
p + my_theme

Go to Rstudio Preferences, Code, Edit code snippets, and add the following lines:

snippet ggplot
     |>
    ggplot(aes(x=${1:x}, y=${2:y}, color=${3:z})) +
        geom_point() +
        labs(x = "X label", 
             y = "Y label",
             color = "Color label") +
        theme_bw()

11.2.5 Making interactive plots with ggplot2 and plotly

Thanks to the plotly package, it is really easy to transform a ggplot plot into an interactive plot:

# load plotly
library(plotly)
p <- diamonds |> 
        sample_n(100) |> 
        ggplot(aes(x = carat, y = price)) + 
        geom_point(aes(color = clarity), alpha = 0.5, size = 2) + 
        my_theme
ggplotly(p, dynamicTicks = TRUE)

11.2.6 Gathering plots on a grid

If you have several plot you want to gather on a grid and you can’t use facet_wrap() (because they come from different data sets), you can use the library patchwork:

library(patchwork)
library(ggplot2)
theme_set(theme_bw())
x  <- seq(-2*pi,2*pi,.1)
p1 <- qplot(x,sin(x), geom = "line")
p2 <- qplot(x,cos(x), geom = "line")
p3 <- qplot(x,atan(x), geom = "line")
p4 <- qplot(x,dnorm(x), geom = "line")
p1 + p2

p1 + p2 / p3 + p4 + 
    plot_annotation(tag_levels = 'a', tag_suffix=")")

(p1 + p2 + plot_layout(widths = c(1,3))) /
p3/p4 + 
    plot_layout(heights = c(6, 2, 1))

11.2.7 Plots with insets

If you want to make an inset plot, first make your plots, then add a plot within the other using patchwork::inset_element(), specifying the x and y positions of the 4 corners of the inset plot using relative values:

p4 + inset_element(p3, left   = 0.01, right = .4, 
                       bottom = .45,    top = .99)

11.3 Exporting a plot to pdf or png

11.3.1 A single plot

A plot can be exported if surrounded by XXX and dev.off(), with XXX that can be pdf("xxx.pdf",height=6, width=8), png("xxx.png",height=600, width=800)… Examples:

P <- ggplot(df, aes(x,y)) + geom_point()
pdf("plot.pdf",height=6, width=8)
P
dev.off()
pdf("plot.png",height=600, width=800)
plot(x,y,
     type="l",
     xlab="x"
     )
dev.off()

You can also export the graph as a .tex file using tikz(), which allows you to use \(\LaTeX\) mathematical expressions (don’t forget to escape the \ character or to use raw string literal syntax r"(...)"):

library(tikzDevice)
tikz("plot.tex",height=6, width=8, pointsize = 10, standAlone=TRUE)
plot(x,y,
     type="l",
     xlab=r"($\omega_i$)"
     )
dev.off()
tools::texi2pdf("plot.tex") # compile the tex file to pdf
system("open -a Skim plot.pdf") # on Mac: open the resulting pdf with Skim

Here is a function I use to save my plots as pdf using tikzDevice:

#' plot_to_pdf()
#'
#' Saves a ggplot to pdf through a tikzDevice
#'
#' @param P A ggplot plot.
#' @param filename A file name if pdf export wanted in the folder "Plots".
#' @param out.folder The folder where the pdf will be saved.
#' @param H Height of the exported plot
#' @param W Width of the exported plot
#' @param open logical. Open the file once created?
plot_to_pdf <- function(P, 
                        filename="plot",
                        out.folder=".",
                        H=6, 
                        W=8, 
                        open=TRUE) {
    # if tikzDevice is not loaded, load it and set the options
    if (! "tikzDevice" %in%(.packages())) {
        library(tikzDevice)
        options(tikzLatexPackages 
            =c(getOption( "tikzLatexPackages" ),
            r"(\usepackage{cmbright})", # for sans serif font
            r"(\usepackage{bm})", # for bold maths
            r"(\usepackage[utf8]{inputenc})",
            r"(\usepackage{wasysym})")
        )
    }

    tikz(paste0(filename, ".tex"), height = H, 
        width = W, pointsize = 10, standAlone = TRUE)
    print(P)
    dev.off()
    # compile the .tex file to pdf
    tools::texi2pdf(paste0(filename, ".tex"))
    # move the pdf to the output folder
    file.copy(from = paste0(filename, ".pdf"), 
              to = paste0(out.folder, "/"))
    # clean compilation files
    toremove <- list.files(pattern = filename)
    if(out.folder == "."){
        toremove <- toremove[!grepl(".pdf", toremove)]
    }
    file.remove(toremove)
    # open the pdf file with Skim (on Mac)
    if (open) system(paste0("open -a Skim ",out.folder,"/",filename,".pdf"))
}

11.3.2 Multiple plots

In case you want to output multiple plots with a for loop, you have two options:

  1. Ouptut a separate file for each plot
  2. For pdf output only: ouptut a single file with a each plot in a different page

In both cases, if you plot with ggplot (which I always recommend), then you need to explicitly print() the plot in the for loop, like so:

  • Output a separate file for each plot:
for(i in 1:4){
    plot_name = paste0("plot_",i,".pdf")
    P <- ggplot(my_data[[i]], aes(x, y)) + geom_point()
    pdf(plot_name, height = 6, width = 8)
    print(P)
    dev.off()
}
  • Output a single file with a page for each plot:
pdf("plots.pdf", height = 6, width = 8)
for(i in 1:4){
    P <- ggplot(my_data[[i]], aes(x, y)) + geom_point()
    print(P)
}
dev.off()

11.4 Further reading

11.5 Exercises

Download the exercises and solutions from the following repositories, then create a Rstudio project from the unzipped folder:

Exercise 1
  • Download the two sample Raman spectra: PPC60_G_01.txt and PPC60_G_30.txt
  • Load them in two separate tibble
  • Gather the two data.frame in another single tidy one: it should have three columns, w, Intensity and file_name
  • Create a function norm01() that, given a vector, returns the same vector normalized to [0,1]
  • Using group_by() and mutate(), add a column norm_int of normalized intensity for each file
  • Plot the two normalized spectra on the same graph using lines of different colors
  • Play with the theme and parameters to reproduce the following plot:

Solution
# Load them in two separate `tibbles`
library(tidyverse)
# Using read.table (who returns a data.frame)
df1 <- read.table("Data/PPC60_G_01.txt", col.names=c("w","Intensity"))
df2 <- read.table("Data/PPC60_G_30.txt", col.names=c("w","Intensity"))
df1 <- tibble(df1) # make a tibble from a data.frame
df2 <- tibble(df2)
# Direct version using tidyverse (read_table returns a tibble)
df1 <- read_table("Data/PPC60_G_01.txt", col_names=c("w","Intensity"))
df2 <- read_table("Data/PPC60_G_30.txt", col_names=c("w","Intensity"))
# Gather the two `tibbles` in another single tidy one: 
# it should have three columns, `w`, `Intensity` and `file_name`
df1$file_name <- "PPC60_G_01" # add the "file_name" column
df2$file_name <- "PPC60_G_30"
df_tidy <- bind_rows(df1,df2) # stack the two tibbles
# Create a function `norm01` that, given a vector, returns the same vector normalized to [0,1]
norm01 <- function(x) {
    (x-min(x))/(max(x)-min(x))
}
# Using `group_by` and `mutate`, add a column `norm_int` in df_tidy of normalized intensity for each file
df_tidy <- df_tidy |> 
    group_by(file_name) |> 
    mutate(norm_int=norm01(Intensity))
# Plot the two normalized spectra on the same graph using lines of different colors
library(ggplot2)
df_tidy |> 
    ggplot(aes(x=w, y=norm_int, color=file_name))+
        geom_line()+
        theme_bw()

# Play with the theme and parameters to reproduce the following plot:
df_tidy |> 
    ggplot(aes(x=w, y=norm_int, color=file_name)) +
        geom_line()+
        scale_color_manual(values=c("red","royalblue"), name="") +
        labs(x="Raman Shift [1/cm]", y="Intensity [arb. unit]") +
        theme_bw() +
        theme(legend.position = "top",
              text = element_text(size = 14,family = "Times"),
              panel.grid.major = element_blank(), 
              panel.grid.minor = element_blank())

Exercise 2
  • Download rubis_01.txt, rubis_02.txt, rubis_03.txt and rubis_04.txt and load them into a tidy tibble.
  • Normalize all data to [0,1] in a 4th column
  • Plot the 4 spectra on top of each other with a vertical shift of 1, with a different color for each spectrum
    • For this, check out the factor() function:
x <- c("a","a","b","c","a")
factor(x)
#> [1] a a b c a
#> Levels: a b c
#> [1] 1 1 2 3 1
  • Annotate on the base line with the name of the file. For this, use annotate("text", x, y, label)
  • It should look like this:

Solution
library(tidyverse)
library(ggplot2)
df <- tibble()
norm01 <- function(x) {
    (x-min(x))/(max(x)-min(x))
}
for (i in 1:4) {
    d  <- read_table(paste0("Data/rubis_0",i,".txt"), col_names=c("w", "Int"))
    d$Int_n <- norm01(d$Int)
    d$name  <- paste0("rubis_0",i)
    df      <- bind_rows(df, d)
}
fnames <- unique(df$name)
ggplot(data=df, aes(x=w, 
                    y=Int_n+as.numeric(factor(name))-1, 
                    color=name))+
    geom_line(size=1)+
    annotate("text", x=3080, y=1:length(fnames)-.85, label=fnames, size=5)+
    labs(x="Raman Shift [1/cm]", y="Intensity [arb. units]")+
    theme_bw()+
    theme(legend.position = "none",
          text            = element_text(size = 14),
          axis.text.y     = element_blank(),
          axis.text       = element_text(size = 14))

Exercise 3
  • Download dataG.zip
  • Make a plot similar to this one (don’t bother with the fit), plotting the evolution of a Raman spectrum as a function of pressure:

Bonus:

  • Looking at data for increasing pressures
    • Plot the data using an interactive slider (see about the frame option here)
    • Plot the data using a 3D color map. Since the data are not on a regular grid, you will need to interpolate the data on a regular grid with the akima package and its interp() function. See chapter @ref(colorplots) on 3D plotting for help.
Solution
# get the list of files for the ramps up and down and out of cell
files_up   <- list.files("Data/dataG/", pattern="up")
files_down <- list.files("Data/dataG/", pattern="down")
out_cell   <- list.files("Data/dataG/", pattern="out")
# store all file names in the correct order
allfiles <- c(out_cell, files_up, files_down)
# load the wanted package
library(tidyverse)
library(ggplot2)
# create the norm01 function
norm01 <- function(x) { (x-min(x))/(max(x)-min(x)) }
# initialize an empty tibble to store all data
alldata <- tibble()
for (file in allfiles) {#file <- allfiles[1]
    # read the data and stor it in d
    d <- read_table(paste0("Data/dataG/",file), col_names=TRUE)
    # normalize data
    d$Int_n <- norm01(d$Int)
    # store file name
    d$name <- file
    # store run number for the stacking
    d$run_number <- which(file==allfiles)
    # store all data in a single tidy tibble
    alldata <- bind_rows(alldata, d)
}
# plot all data
alldata |> 
    filter(w<=1750, w>=1500) |> # zoom on the interesting part
    ggplot(aes(x=w, 
               y=Int_n + run_number - 1))+ # to stack the plots
        geom_point(color="gray", alpha=.5, size=.2)+ #plot data with points
        xlim(c(1500,1800))+ #add some white space on the right to write the pressure
        geom_vline(xintercept=1592, lty=2, size=1)+#show a vertical line
        annotate(geom  = "text", size=5, #show the pressure values
                 x = 1760, y=seq_along(allfiles)-1, hjust = 0,
                 label  = paste(unique(alldata$P),"GPa"),
                 family = "Times")+
        labs(x="Raman Shift [1/cm]", #have the good axis labels
             y="Intensity [arb. units]")+
        theme_bw()+#black and white theme
        theme(legend.position = "none",#no legend
              text            = element_text(size = 14, family = "Times"),#text in font Times
              axis.text.y     = element_blank(),# no y axis values
              axis.text       = element_text(size = 14),
              panel.grid.major = element_blank(), # no grid
              panel.grid.minor = element_blank())

# Looking at data for increasing pressures, plot the data using an interactive slider
library(plotly)
P <- alldata |> 
    filter(grepl("up",name)) |> # only increasing pressures
    filter(w<=1850, w>=1500) |> # zoom on the interesting part
    ggplot(aes(x=w, 
               y=Int_n,
               frame=P))+ # each pressure in a new frame
        geom_point(color="gray", alpha=.5, size=1)+ #plot data with points
        labs(x="Raman Shift [1/cm]", #have the good axis labels
             y="Intensity [arb. units]")+
        theme_bw()+#black and white theme
        theme(legend.position = "none",#no legend
              text            = element_text(size = 14, family = "Times"),
              axis.text       = element_text(size = 14),
              panel.grid.major = element_blank(), # no grid
              panel.grid.minor = element_blank())
ggplotly(P, dynamicTicks = TRUE)
# Plot the data using a 3D color map. Since the data are not on a regular grid, 
# you will need to interpolate the data on a regular grid 
# with the `akima` package and its `interp()` function
library(akima)
toplot <- alldata |> 
            filter(grepl("up",name)) |>             filter(w<=1850, w>=1500)
toplot.interp <- with(toplot, 
                    interp(x = w, y = P, z = Int_n, 
                           duplicate="median",
                           xo=seq(min(toplot$w), max(toplot$w), length = 100),
                           yo=seq(min(toplot$P), max(toplot$P), length = 100),
                           extrap=FALSE, linear=FALSE)
                   )
# toplot.interp is a list of 2 vectors and a matrix
str(toplot.interp)
#> List of 3
#>  $ x: num [1:100] 1500 1504 1507 1511 1514 ...
#>  $ y: num [1:100] 2.12 2.35 2.59 2.82 3.06 ...
#>  $ z: num [1:100, 1:100] NA NA NA 0.0287 0.0291 ...
# Regrouping this list to a 3-columns data.frame
melt_x <- rep(toplot.interp$x, times=length(toplot.interp$y))
melt_y <- rep(toplot.interp$y, each=length(toplot.interp$x))
melt_z <- as.vector(toplot.interp$z)
toplot.smooth <- na.omit(data.frame(w=melt_x, Pressure=melt_y, Intensity=melt_z))
# Plotting
colors <- colorRampPalette(c("white","royalblue","seagreen","orange","red","brown"))(500)
P <- ggplot(data=toplot.smooth, aes(x=w, y=Pressure, fill=Intensity)) + 
      geom_raster() + 
      scale_fill_gradientn(colors=colors, name="Normalized\nIntensity\n[arb. units]") +
      labs(x = "Raman Shift [1/cm]",y="Pressure [GPa]") +
      theme_bw()+
      theme(text            = element_text(size = 14, family = "Times"),
            axis.text       = element_text(size = 14),
            panel.grid.major = element_blank(), # no grid
            panel.grid.minor = element_blank())
ggplotly(P, dynamicTicks = TRUE)
Exercise 4
  • Download population.csv and load it into a data.frame
  • Is it a tidy data.frame?
    • Do we want a tidy data.frame?
    • Why?
    • Act accordingly
  • Plot the population vs. year with a color for each city
    • With points
    • With lines
    • With a black and white theme
    • Make it interactive
  • Try reproducing the following plots (Google is your friend) (look into the function reorder() and this help to use it with facets):

Solution
# Load and tidy population data.frame
library(tidyverse)
df <- read.csv("Data/population.csv")
df <- pivot_longer(df, 
                   cols=-year, #year should stay a column
                   names_to="City", #column names should go to the column `city`
                   values_to="Population" #values should go to the column `population`
                   )
df$City <- gsub("\\.", " ", df$City) # replace dots by spaces in city names
# Plot the population vs. year with a different color for each city
p <- ggplot(data=df, aes(x=year, y=Population, color=City))
# With points
p + geom_point()
# With lines
p + geom_line()
# With a black and white theme
# Change the axis labels to "year" and "Population"
p <- p + geom_line() + theme_bw(); p
# Make it interactive
library(plotly)
ggplotly(p, dynamicTicks = TRUE)
# Reproduce the plots
my_theme <- theme_bw()+
            theme(axis.text = element_text(size = 14,family = "Helvetica",colour="black"),
                  text = element_text(size = 14,family = "Helvetica"),
                  axis.ticks = element_line(colour = "black"),
                  legend.text = element_text(size = 10,family = "Helvetica",colour="black"),
                  panel.border = element_rect(colour = "black", fill=NA, linewidth=1)
                  )
colors <- c("royalblue","red")
p1 <- df |> filter(City%in%c("Montpellier","Nantes")) |> 
        ggplot(aes(x=year, y=Population, size=Population, color=City)) +
            geom_point() + 
            geom_smooth(method="lm", aes(fill=City), 
                        alpha=0.1, show.legend = FALSE) + 
            scale_color_manual(values=colors)+
            scale_fill_manual(values=colors)+
            ggtitle("Population in Montpellier and Nantes")+
            labs(x="Year", y="Population")+
            my_theme 
p1
p2 <- df |> filter(year==2012) |> 
        ggplot(aes(x=reorder(City,-Population), 
                   y=Population/1e6, 
                   fill=Population/1e6)) +
            geom_bar(stat="identity", position="dodge") + 
            ggtitle("Population in 2012 (in millions)")+
            labs(x="", y="Population (in millions)")+
            scale_fill_gradientn(colors=colors, 
                                 name="Population\n(in millions)") +
            my_theme + 
            theme(axis.text.x = element_text(angle = 45, hjust=1))
p2